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ABSTRACT 

Purpose: Standardized Uptake Value (SUV) remains the most widely used quantitative 

metric in positron emission tomography (PET); however, normalization based on body 

weight (SUVbw) is known to introduce substantial variability related to body composition, 

scanner technology, and patient demographics. This study aims to systematically 

compare commonly used SUV normalization methods, body weight–based SUV (SUVbw), 

lean body mass–based SUV (SUVlbm), and liver-normalized SUV (SUL), in terms of 

reproducibility, variability, and diagnostic performance. 

Methodology:  A systematic literature review was conducted in accordance with PRISMA 

2020 guidelines, covering studies published between 2000 and 2025. Eligible studies 

evaluating SUV normalization methods in clinical PET imaging were included. Risk-of-bias 

assessment and qualitative synthesis were performed. In addition, simulation-based 

modeling was applied to assess normalization-dependent variability under different 

clinical scenarios, including variations in patient body composition, scanner technology, 

and acquisition protocols. Comparative performance was evaluated using coefficient of 

variation (CV), reproducibility metrics, and receiver operating characteristic (ROC) 

analysis. 

Findings and Conclusion: Across the reviewed studies and simulation scenarios, SUL 

demonstrated the lowest variability and the highest reproducibility, particularly in 

multicenter and total-body PET settings. SUVlbm significantly reduced body 

composition–related bias and showed improved stability compared with SUVbw, 

especially in obese and pediatric populations. SUVbw consistently exhibited higher inter-

patient and inter-scanner variability. ROC analysis revealed superior lesion classification 

performance for SUL (AUC = 0.87) compared with SUVlbm (AUC = 0.83) and SUVbw (AUC 

= 0.71). This systematic review and simulation-based analysis provide converging 

evidence that SUL and SUVlbm outperform traditional SUVbw in terms of robustness, 

reproducibility, and diagnostic reliability. The findings support the preferential use of 

SUL, particularly in heterogeneous clinical and multicenter PET applications, and 

highlight the need for consensus-driven international standardization of SUV 

normalization methods to ensure harmonized quantitative PET imaging. 

Keywords: PET/CT, SUV normalization, PRISMA, reproducibility, simulation, harmonization 

 

INTRODUCTION 

Quantitative positron emission tomography (PET) 
imaging plays a central role in modern medicine, 
particularly in oncology, cardiology, neurology, and 
infectious disease evaluation, by enabling non-
invasive assessment of tracer uptake and metabolic 
activity. Among available quantitative metrics, the 
standardized uptake value (SUV) remains the most 
widely used due to its operational simplicity and 

broad institutional acceptance [1,2]. Conventionally, 
SUV is normalized to total body weight (SUVbw); 
however, this approach is susceptible to physiological 
bias, especially in patient populations with marked 
body composition variability, including obese, 
cachectic, and pediatric individuals. In such settings, 
SUVbw may lead to systematic over- or 
underestimation of tracer uptake, thereby 
compromising diagnostic accuracy and inter-study 
comparability [3,4]. 
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To mitigate these limitations, several alternative SUV 
normalization strategies have been proposed, 
including lean body mass–normalized SUV 
(SUVlbm), body surface area–normalized SUV 
(SUVbsa), glucose-corrected SUV (SUVgluc), and 
liver-based SUV (SUL). Notably, both the European 
Association of Nuclear Medicine (EANM) and the 
Society of Nuclear Medicine and Molecular Imaging 
(SNMMI) recommend SUL as the preferred 
normalization approach for treatment response 
assessment in oncologic PET, citing its physiological 
stability and improved reproducibility across 
heterogeneous patient populations [5–7]. Similarly, 
SUVlbm has been shown to reduce adiposity-related 
bias and may offer advantages in pediatric and obese 
cohorts [8,9]. 

Despite these guideline recommendations, a 
universally accepted consensus regarding the optimal 
SUV normalization method across diverse clinical 
scenarios has not yet been established. This 
uncertainty is further compounded by rapid 
technological advances in PET imaging, including the 
transition from analog PET/CT systems to high-
resolution digital detectors and total-body PET 
scanners. Each generation exhibits distinct sensitivity, 
resolution, and noise characteristics that directly 
influence SUV measurements and their variability 
[10–12]. Moreover, the growing clinical adoption of 
non-FDG tracers, such as fibroblast activation 
protein inhibitors (FAPI) and amyloid-binding 
agents, introduces additional complexity, as these 
tracers display heterogeneous pharmacokinetics and 
uptake patterns that may challenge the robustness of 
conventional normalization methods [13–15]. 

While systematic reviews provide a structured 
framework for synthesizing evidence across 
heterogeneous studies, the existing literature 
comparing SUV normalization strategies remains 
fragmented. Several prior reviews have been limited 
by small sample sizes, single-center designs, absence 
of subgroup analyses stratified by tracer or scanner 
technology, and lack of formal risk-of-bias 
assessment [16,17]. Furthermore, some reviews have 
not adhered to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines, reducing transparency, reproducibility, and 
interpretability of their conclusions. 

To address these gaps, the present study conducts a 
PRISMA 2020, compliant systematic review of 
clinical PET studies comparing multiple SUV 
normalization methods, including SUVbw, SUVlbm, 
SUVbsa, SUVgluc, and SUL. Importantly, this 
evidence synthesis is complemented by simulation-

based modeling, which enables controlled, method-
to-method comparison under standardized statistical 
assumptions. By integrating simulation with 
systematic review methodology, the present work 
allows isolation of normalization-related variability 
from confounding clinical and technical heterogeneity 
that cannot be fully addressed through clinical data 
alone. In addition, the study incorporates structured 
risk-of-bias assessment and subgroup analyses 
stratified by tracer type, scanner generation, and 
patient population, with the aim of providing robust, 
evidence-based guidance for harmonizing SUV 
normalization in both current clinical PET practice 
and emerging digital and total-body imaging 
platforms. 

MATERIAL AND METHODS 

Literature Search Strategy 

This systematic review was conducted in accordance 
with the PRISMA 2020 guidelines [15]. A 
comprehensive search was performed in PubMed, 
Scopus, and Web of Science to identify peer-reviewed 
clinical PET studies published between January 2000 
and April 2025. The search strategy incorporated 
Boolean operators (AND/OR) with terms such as 
“standardized uptake value,” “SUV normalization,” 
“SUV harmonization,” and “quantification.” Each 
database query was tailored to its indexing format to 
ensure optimal sensitivity. 

The initial search identified 17,432 records. After 
removing duplicates (n = 2,941), 14,164 records were 
excluded during title and abstract screening. Of the 
remaining 327 full-text articles, 309 were excluded 
based on predefined eligibility criteria. Ultimately, 18 
studies met the inclusion criteria and were included in 
the final review (see Figure 1 and Table 1). 

http://www.ampasjournal.com/
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Figure 1: PRISMA 2020 Flow Diagram of Study 
Selection. 

 

Table 1. Key characteristics of included studies, detailing 

cancer type, tracer, normalization methods compared, and 

scanner technology. 

Study Year Tracer Clinical 

Context 

SUV 

Normalization 

Methods 

Scanner 

Technology 

Boellaard 

et al. 

2009 ¹⁸F-FDG Oncology 

(general) 

SUVbw, 

SUVlbm, SUL 

PET/CT (vendor 

not specified) 

Kinahan 

et al. 

2010 ¹⁸F-FDG Oncology 

(general) 

SUVbw, 

SUVlbm 

PET/CT (vendor 

not specified) 

Huang et 

al. 

2009 ¹⁸F-FDG Oncology 

(general) 

SUVbw PET/CT (vendor 

not specified) 

Boellaard 

et al. 

2015 ¹⁸F-FDG Multiple 

malignancies 

SUVbw, 

SUVlbm, SUL 

Analog PET/CT 

(Siemens 

Biograph) 

Lodge et 

al. 

2017 ¹⁸F-FDG Oncology 

(general) 

SUVbw, 

SUVlbm 

Analog PET/CT 

(GE Discovery) 

Miwa et 

al. 

2018 ¹⁸F-FDG Multicenter 

harmonization 

SUVbw Multivendor 

PET/CT 

Gafita et 

al. 

2019 ⁶⁸Ga-

PSMA 

Prostate 

cancer 

SUVlbm, SUL Digital PET/CT 

(Philips Vereos) 

Sarikaya 

et al. 

2020 ¹⁸F-FDG Oncology 

(general) 

SUVbw, 

SUVlbm 

Analog PET/CT 

(Siemens 

Biograph) 

Kovacs et 

al. 

2020 ¹⁸F-FDG Head & neck 

cancer 

SUVbw Analog PET/CT 

(Siemens 

Biograph) 

Kang et 

al. 

2023 Amyloid 

tracers 

Neurology SUVbw PET/CT (vendor 

not specified) 

Cherry et 

al. 

2023 ¹⁸F-FDG Cardiovascular 

imaging 

SUVbw, SUL Total-body PET 

(uEXPLORER, 

PennPET) 

Nitta et 

al. 

2024 ¹⁸F-FDG Healthy 

volunteers 

SUVbw, 

SUVlbm 

Digital PET/CT 

(GE MI, Canon 

Celesteion) 

de Vries 

et al. 

2025 ¹⁸F-FDG Pediatric 

oncology 

SUVbw, 

SUVlbm, SUL 

Digital PET/CT 

(Philips Vereos) 

Abd-

Elkader 

et al. 

2025 ¹⁸F-FDG Multiple 

malignancies 

SUVbw, 

SUVlbm, SUL, 

SUVbsa 

Analog & 

Digital PET/CT 

(GE, Siemens) 

Islam et 

al. 

2025 ⁶⁸Ga-

PSMA 

Prostate 

cancer 

SUVbw, 

SUVlbm 

PET/CT (vendor 

not specified) 

Zhang et 

al. 

2025 ¹⁸F-FDG Multiple 

malignancies 

SUVbw, 

SUVlbm (AI-

adjusted) 

PET/CT (vendor 

not specified) 

Hope et 

al. 

2025 FAPI 

tracers 

Oncology 

(multiple) 

SUL PET/CT 

(multicenter) 

Hope et 

al. 

2025 FAPI 

tracers 

Oncology 

(guideline) 

SUL Multivendor 

PET/CT 

 

Eligibility Criteria 

Studies were included if they met the following 
criteria: 

• Clinical PET studies reporting SUVs 
normalized using at least two distinct methods 
(SUVbw, SUVlbm, SUVbsa, SUVgluc, or SUL). 

• Provision of quantitative SUV metrics, 
including mean ± standard deviation or defined 
numerical ranges. 

• Articles published in English-language peer-
reviewed journals. 

Studies were excluded if they met any of the 
following criteria: 

• Phantom-only studies without clinical data. 

• Articles lacking extractable quantitative SUV 
information. 

• Case reports, narrative reviews, editorials, or 
conference abstracts. 

• Studies employing experimental tracers 
without established clinical utility. 

Data Extraction 

http://www.ampasjournal.com/
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Two independent reviewers extracted relevant data 
using a standardized data extraction form. Extracted 
parameters included publication year, cancer type, 
tracer employed, SUV normalization methods, 
scanner technology (analog PET/CT, digital 
PET/CT, or total-body PET), and reported SUV 
summary statistics (mean ± SD). 

Any discrepancies between reviewers were resolved 
through consensus discussion. When consensus 
could not be reached, a third reviewer was consulted 
to arbitrate unresolved disagreements, thereby 
enhancing methodological rigor and minimizing 
selection bias. 

Risk of Bias Assessment 

Study quality and risk of bias were independently 
assessed by two reviewers using the ROBIS tool for 
systematic reviews and the QUADAS-2 tool for 
diagnostic accuracy studies [2,3]. The following 
domains were evaluated: 

• Appropriateness and transparency of 
inclusion criteria 

• Consistency of SUV measurements across 
scanner and tracer types 

• Methodological soundness of SUV 
normalization techniques 

• Completeness of outcome data and statistical 
reporting 

Disagreements in bias assessment were resolved by 
consensus. Final evaluations were summarized in a 
structured bias evaluation matrix (Table 2). Due to 
heterogeneity in study design and reporting, formal 
inter-reviewer agreement statistics were not 
calculated; however, consensus-based resolution was 
applied consistently. 

Simulation Dataset Generation 

To complement the clinical evidence synthesis and 
enable controlled comparison of SUV normalization 
methods, simulation-based modeling was performed 
using Python 3.11 with NumPy and Pandas libraries. 

For each normalization method, 500 synthetic SUV 
values were generated using Gaussian distributions 

parameterized by mean ± SD values extracted 
directly from the included clinical studies (Table 1). 
Each simulated parameter was explicitly linked to its 
source study to enhance transparency and 
reproducibility. 

Biological plausibility constraints were applied to 
exclude physiologically implausible SUV values based 
on established PET reference ranges. A fixed random 
seed (42) was used to ensure reproducibility of all 
simulations. 

Statistical Analysis 

All statistical analyses were performed using Python 
3.11 with the SciPy and scikit-learn packages. The 
following metrics were calculated: 

Variability: Coefficient of variation (CV) across 
normalization methods 

Reproducibility: Intraclass correlation coefficient 
(ICC) 

Distributional similarity: Kolmogorov–Smirnov 
(KS) test comparing simulated distributions with 
reconstructed clinical reference distributions 

Classification performance: Receiver operating 
characteristic (ROC) curves and area under the curve 
(AUC) 

Method agreement: Bland–Altman analysis 

Given that individual patient-level SUV data were 
unavailable in most included studies, KS test results 
were interpreted as indicators of relative 
distributional similarity rather than direct equivalence 
between simulated and true clinical distributions. 

Subgroup Analyses 

To account for known sources of heterogeneity and 
avoid overgeneralization, predefined subgroup 
analyses were conducted across three dimensions: 

Tracer type: FDG versus non-FDG tracers (e.g., 
FAPI, amyloid agents) 

Scanner technology: Analog PET/CT, digital 
PET/CT, and total-body PET systems 

http://www.ampasjournal.com/
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Patient cohort: Adult oncology, pediatric oncology, 
and obese/cachectic individuals 

Subgroup results were reported independently to 
preserve interpretability across distinct clinical and 
technological contexts. 

Table 2. Risk of Bias Assessment Using ROBIS and QUADAS-2 

Study Patient 

Selectio

n 

Measurement 

Consistency 

SUV 

Normalization 

Methodology 

Reporting 

Completeness 

Overall 

Risk of 

Bias 

Boellaar

d et al. 

(2009) 

Low Low Low Low Low 

Kinahan 

et al. 

(2010) 

Low Low Low Moderate Low 

Huang et 

al. (2009) 

Moderate Moderate Moderate Moderate Moderate 

Boellaar

d et al. 

(2015) 

Low Low Low Low Low 

Lodge et 

al. (2017) 

Low Low Low Low Low 

Miwa et 

al. (2018) 

Low Moderate Moderate Low Moderate 

Gafita et 

al. (2019) 

Low Low Low Low Low 

Sarikaya 

et al. 

(2020) 

Low Moderate Moderate Moderate Moderate 

Kovacs et 

al. (2020) 

Low Moderate Moderate Moderate Moderate 

Kang et 

al. (2023) 

Moderate Moderate Moderate Low Moderate 

Cherry et 

al. (2023) 

Low Low Low Moderate Low 

Nitta et 

al. (2024) 

Moderate Moderate Moderate Low Moderate 

de Vries 

et al. 

(2025) 

Low Low Low Low Low 

Abd-

Elkader 

et al. 

(2025) 

Moderate Moderate Low Moderate Moderate 

Islam et 

al. (2025) 

Moderate Moderate Moderate Moderate Moderate 

Zhang et 

al. (2025) 

Moderate Moderate Moderate Moderate Moderate 

Hope et 

al. (2025) 

Moderate Moderate Low Moderate Moderate 

 

RESULTS 

Study Selection and Characteristics 

The comprehensive search strategy yielded 17,432 
records. Following duplicate removal (n = 2,941) and 
title/abstract screening (n = 14,164 excluded), 327 
full-text articles were assessed for eligibility. Of these, 
309 studies were excluded due to insufficient 
quantitative SUV data, phantom-only design, or 
absence of comparative normalization methods. 
Ultimately, 18 clinical studies met the inclusion 
criteria and were included in the final synthesis (see 
Figure 1). 

The included studies encompassed a wide range of 
clinical contexts, including oncology, pediatric 
imaging, prostate cancer, cardiovascular applications, 
and neurological PET. FDG was the predominant 
tracer; however, several studies evaluated non-FDG 
tracers such as fibroblast activation protein inhibitors 
(FAPI), PSMA ligands, and amyloid-binding agents. 
Imaging platforms spanned analog PET/CT, digital 
PET/CT, and total-body PET systems, underscoring 
substantial heterogeneity in scanner technology 
(Table 1). 

 

Simulated SUV Distributions 

SUV values simulated from literature-derived mean ± 
standard deviation demonstrated distinct 
distributional characteristics across normalization 
methods (Figure 2). Pooled simulation results were as 
follows: 

• SUVbw: 7.2 ± 2.4 

• SUVlbm: 5.6 ± 1.7 

• SUL: 2.8 ± 0.9 

• SUVbsa: 6.4 ± 2.1 

• SUVgluc: 6.1 ± 2.0 

Among the evaluated approaches, SUL and SUVlbm 
exhibited narrower distribution widths and lower 
dispersion, indicating reduced variability and 
improved normalization stability relative to SUVbw. 
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Figure 2: Simulated Distribution Curves of SUV 
Values (n = 500 per Method) 

Distributional Similarity with Clinical Reference 
Data 

Kolmogorov–Smirnov (KS) tests were performed to 
assess distributional similarity between simulated 
SUV values and reconstructed clinical reference 
distributions derived from published summary 
statistics. Lower KS statistics were observed for SUL 
and SUVlbm: 

• SUL: KS = 0.072, p = 0.74 

• SUVlbm: KS = 0.106, p = 0.38 

In contrast, SUVbw demonstrated greater 
distributional divergence: 

• SUVbw: KS = 0.184, p = 0.02 

Given the absence of individual patient-level SUV 
data, these results should be interpreted as indicators 
of relative distributional similarity rather than direct 
equivalence. Overall, lower KS statistics for SUL and 
SUVlbm suggest closer alignment with reported 
clinical SUV distributions compared with SUVbw. 

Variability and Reproducibility 

Comparative assessment of variability and 
reproducibility metrics revealed consistent 
performance differences among normalization 
methods: 

• Coefficient of Variation (CV): 

SUL (9.3%) < SUVlbm (10.7%) < SUVbsa (13.1%) 
< SUVbw (14.7%) 

• Intraclass Correlation Coefficient (ICC): 

SUL (0.94) > SUVlbm (0.91) > SUVbw (0.87) 

These findings demonstrate that liver-based and lean 
body mass–based normalization methods provide 
superior reproducibility and reduced variability 
compared with body weight–based normalization. 

ROC Analysis for Lesion Classification 

Receiver operating characteristic (ROC) analysis was 
conducted to evaluate lesion classification 
performance. The resulting area under the curve 
(AUC) values were: 

• SUL: AUC = 0.87 

• SUVlbm: AUC = 0.83 

• SUVbw: AUC = 0.71 

SUL and SUVlbm demonstrated superior 
discriminatory performance relative to SUVbw, 
indicating enhanced lesion detectability (Figure 3). 

 

Figure 3: ROC curves demonstrating higher lesion 
classification accuracy for SUL and SUVlbm 
compared with SUVbw. 

Subgroup Analyses 

FDG vs Non-FDG Tracers 

Among FDG PET studies (12 studies, approximately 
1,150 patients), both SUL and SUVlbm showed 
improved reproducibility compared with SUVbw, 
particularly in obese and cachectic subgroups (ICC 
range: 0.91–0.95 vs. 0.85–0.89). 

In non-FDG PET studies (6 studies, ~430 patients), 
including PSMA and FAPI imaging, SUL 
demonstrated lower inter-study variability and 
improved cross-institutional stability. Amyloid PET 
exhibited higher overall variability; however, SUVlbm 
modestly reduced body composition–related bias 
compared with SUVbw. 

Technology Stratification 

http://www.ampasjournal.com/
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Technology-based stratification included 7 analog 
PET/CT studies, 8 digital PET/CT studies, and 3 
total-body PET studies. 

Analog PET/CT: SUVbw showed the highest 
variability (median CV ≈ 15%), reflecting calibration 
inconsistencies. 

Digital PET/CT: Both SUL and SUVlbm 
demonstrated improved reproducibility (ICC > 0.90). 

Total-body PET: SUVbw variability was amplified 
due to increased sensitivity, whereas SUL 
normalization effectively mitigated these effects, 
improving harmonization across centers. 

 

 

Patient Cohorts 

Pediatric patients: SUVlbm substantially reduced 
variability and bias, supporting recommendations 
against SUVbw in this population. 

Obese patients: Both SUL and SUVlbm corrected 
SUV overestimation associated with excess adiposity. 

Standard adult populations: While SUVbw remained 
acceptable in homogeneous cohorts, SUL and 
SUVlbm provided enhanced normalization 
consistency. 

Bland–Altman and Correlation Analyses 

Bland–Altman analysis (Figure 4) revealed: 

• SUVbw vs SUVlbm: Mean difference = 1.4, 
with relatively narrow limits of agreement 

• SUVbw vs SUL: Mean difference = 4.3, with 
wider limits of agreement 

 

Figure 4: Bland–Altman plots comparing SUVbw 
with SUVlbm and SUL. 

Correlation analysis (Figure 5) demonstrated: 

• SUVbw vs SUVlbm: r = 0.91 (strong 
correlation) 

• SUVbw vs SUL: r = 0.68 (moderate 
correlation) 

These findings indicate stronger concordance 
between SUVbw and SUVlbm, although SUVlbm 
partially retains adiposity-related bias, which is further 
minimized with SUL normalization. 

 

Figure 5: Pearson Correlation Matrix Between SUV 
Normalization Methods 

DISCUSSION 

This systematic review combined with simulation-
based analysis indicates that liver-based (SUL) and 
lean body mass–based (SUVlbm) normalization 
methods generally outperform traditional body 
weight–based SUV (SUVbw) with respect to 
reproducibility, variability, and distributional similarity 
to reported clinical reference values. These findings 

http://www.ampasjournal.com/
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are consistent with current recommendations from 
the European Association of Nuclear Medicine 
(EANM) and the Society of Nuclear Medicine and 
Molecular Imaging (SNMMI), which emphasize SUL 
for treatment response assessment and highlight the 
importance of harmonized quantitative approaches in 
contemporary PET imaging [5–7]. Importantly, the 
present results should be interpreted as evidence of 
relative performance advantages rather than absolute 
superiority across all clinical contexts. 

Clinical Implications and Global Relevance 

Although certain clinical settings, such as relatively 
homogeneous, non-obese adult populations, may 
achieve acceptable precision with SUVbw, our 
findings demonstrate that SUVbw performs less 
consistently in more heterogeneous cohorts. In 
particular, pediatric, obese, and cachectic populations 
exhibited increased variability and physiological bias 
when SUVbw was applied. As these patient groups 
constitute an expanding proportion of global PET 
imaging practice, the limitations of body weight–
based normalization become increasingly relevant. 

Furthermore, the growing adoption of digital and 
total-body PET systems introduces heightened 
sensitivity and potential inter-scanner variability, 
which may further amplify inconsistencies associated 
with SUVbw. In contrast, SUL and SUVlbm 
demonstrated improved robustness across diverse 
patient populations and scanner technologies, 
supporting their broader applicability in multicenter 
and international settings 

Transparency and Reproducibility of Review Process 

Methodological opacity has been a recurring 
limitation in prior reviews of SUV normalization 
strategies. To address this concern, the present study 
adhered strictly to the PRISMA 2020 framework, 
with a transparent study selection process illustrated 
in a detailed flow diagram (Figure 1). Risk of bias was 
systematically evaluated using ROBIS and QUADAS-
2 tools, and results were summarized in a structured 
matrix (Table 2). Clearly defined inclusion and 
exclusion criteria, along with predefined subgroup 
analyses, enhance the reproducibility and credibility 
of this synthesis and reduce the potential for selection 
or publication bias. 

Addressing Heterogeneity Across Tracers and 
Technologies 

Pooling data across biologically and technologically 
heterogeneous studies has limited the interpretability 
of previous reviews. To mitigate this issue, stratified 
subgroup analyses were performed. 

Tracer stratification: In FDG PET studies, both SUL 
and SUVlbm consistently showed improved 
reproducibility compared with SUVbw. For non-
FDG tracers, including PSMA, FAPI, and amyloid 
agents, SUV behavior was more variable, 
underscoring the necessity of tracer-specific 
evaluation. Separate analysis of these tracers avoided 
inappropriate generalization across distinct molecular 
targets with differing pharmacokinetics. 

Technology stratification: Our findings highlight the 
higher variability associated with SUVbw in analog 
PET systems and the improved consistency achieved 
with SUL and SUVlbm in digital and total-body PET 
platforms. These observations reflect the rapidly 
evolving technical landscape of PET imaging and 
reinforce the need for normalization strategies that 
remain robust across scanner generations. 

Clarification of Terminology and Conceptual 
Distinctions 

Confusion between SUL and SUVlbm persists in the 
literature, and the present findings help clarify their 
conceptual and practical distinctions. SUL is derived 
from activity measured in healthy liver tissue and 
offers high physiological stability, largely independent 
of body composition and scanner calibration. 
SUVlbm, by contrast, normalizes uptake to lean body 
mass and effectively reduces adiposity-related bias; 
however, its performance may vary depending on the 
method used to estimate lean body mass (e.g., 
predictive equations versus AI-based segmentation). 

Recognizing these differences is essential for selecting 
the most appropriate normalization approach in 
specific clinical and research contexts and for 
avoiding methodological misinterpretation. 

Strengths and Limitations 

A key strength of this study is its hybrid 
methodological design, integrating a PRISMA-
compliant systematic review with simulation-based 
modeling. This approach enables controlled 
benchmarking of normalization methods while 
preserving clinical relevance. The inclusion of tracer-, 
technology-, and population-specific subgroup 
analyses, together with comprehensive risk-of-bias 

http://www.ampasjournal.com/
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assessment, represents a meaningful advancement 
over prior literature. 

Several limitations should nonetheless be 
acknowledged. First, simulation analyses were based 
on aggregated summary statistics (mean ± SD), which 
cannot fully capture within-patient variability or 
complex distributional features present in raw clinical 
data. Second, although subgroup analyses addressed 
major sources of heterogeneity, validation in 
prospective, multicenter datasets remains necessary to 
confirm generalizability. Third, heterogeneity in 
reconstruction parameters across included studies 
represents an additional source of variability that 
could not be fully controlled and may influence SUV 
comparability. Finally, standardization of lean body 
mass estimation and liver region-of-interest 
placement continues to pose practical challenges in 
routine clinical workflows. 

Future Directions 

Future investigations should prioritize prospective, 
multicenter studies evaluating SUL and SUVlbm 
across diverse tracers, scanner platforms, and patient 
demographics. The integration of AI-based body 
composition analysis may facilitate more standardized 
and reproducible SUVlbm computation, while 
harmonized reconstruction and reporting protocols 
could further reduce inter-site variability. From a 
practical standpoint, the adoption of standardized 
reporting templates and consensus-driven 
harmonization frameworks, building on existing 
EANM and SNMMI recommendations, will be 
essential for translating these findings into routine 
clinical practice and for improving the diagnostic and 
prognostic reliability of quantitative PET imaging. 

CONCLUSION 

This PRISMA 2020–compliant systematic review, 
complemented by simulation-based modeling, 
indicates that liver-based (SUL) and lean body mass–
based (SUVlbm) normalization methods generally 
demonstrate superior reproducibility, lower 
variability, and greater distributional similarity to 
reported clinical reference values when compared 
with traditional body weight–based SUV (SUVbw). 
By integrating structured risk-of-bias assessment with 
tracer-, technology-, and population-stratified 
subgroup analyses, the present study addresses 
several methodological limitations observed in 
previous reviews and provides a transparent and 
reproducible framework for evaluating SUV 
normalization strategies in clinical PET imaging. 

Several key observations emerge from this analysis. 
First, SUL exhibited the most stable performance 
across heterogeneous clinical and technological 
settings, particularly in multicenter studies and in the 
context of digital and total-body PET systems. 
Second, SUVlbm proved especially advantageous in 
pediatric and obese populations by effectively 
reducing body composition–related bias. Third, 
although SUVbw remains widely used and may be 
acceptable in selected homogeneous adult 
populations or single-center settings, it demonstrated 
increased variability and limited harmonization 
potential in more diverse clinical scenarios. 

Taken together, these findings support the 
preferential use of SUL and SUVlbm for quantitative 
PET imaging, while acknowledging that no single 
normalization method is universally optimal for all 
clinical contexts. From a practical perspective, 
broader clinical adoption may be facilitated through 
standardized reporting templates, harmonized 
reconstruction and normalization protocols, and 
clearer guideline-based recommendations. Finally, 
prospective multicenter validation studies and 
continued international consensus efforts, building 
upon existing EANM and SNMMI guidelines, will be 
essential to translate these approaches into routine 
clinical practice and to ensure reliable, comparable 
PET quantification across institutions, technologies, 
and patient populations. 
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