The Simulation Analysis of SUV Normalization Methods in Clinical PET: A PRISMA-Compliant Evaluation with Bias Assessment
Simulation Analysis of SUV Normalization Methods in Clinical PET
DOI:
https://doi.org/10.63187/ampas.40Keywords:
PET/CT, SUV normalization, PRISMA, reproducibility, simulation, harmonizationAbstract
Background: Reliable standardized uptake value (SUV) normalization is essential for quantitative PET imaging and cross-center harmonization. Traditional body weight–based SUV (SUVbw) introduces variability, particularly in obese, pediatric, and cachectic patients. Alternative methods such as lean body mass–based SUV (SUVlbm) and liver-based SUV (SUL) may reduce bias, yet systematic comparisons across tracers, technologies, and populations remain limited.
Methods: A PRISMA 2020–compliant systematic review was conducted using PubMed, Scopus, and Web of Science (2000–2025). Inclusion required clinical PET studies reporting SUVs normalized by ≥2 methods. Risk of bias was assessed (ROBIS/QUADAS-2). Literature-derived mean ± SD values informed simulated datasets (n=500/method). Coefficient of variation (CV), intraclass correlation coefficient (ICC), Kolmogorov–Smirnov (KS) test, area under the curve (AUC), and Bland–Altman analyses were performed. Subgroups: tracer (FDG vs non-FDG), scanner (analog/digital/total-body), and patient cohorts (adult, pediatric, obese).
Results: From 17,432 records, 18 studies met eligibility. SUL showed the lowest variability (CV=9.3%) and highest reproducibility (ICC=0.94), outperforming SUVbw (CV=14.7%, ICC=0.87; p<0.01). SUVlbm reduced bias in obese and pediatric cohorts. ROC analysis confirmed superior classification for SUL (AUC=0.87) and SUVlbm (AUC=0.83) vs SUVbw (AUC=0.71). Subgroup analyses demonstrated SUL stability across tracers and scanners; SUVlbm benefitted body composition–sensitive groups.
Conclusion: SUL and SUVlbm provide more reliable, reproducible quantification than SUVbw. Adoption of these methods, supported by PRISMA methodology and bias assessment, enhances PET harmonization across populations and technologies.
References
Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50 Suppl 1:11S-20S. doi:10.2967/jnumed.108.057182.
Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496-505. doi:10.1053/j.sult.2010.10.001.
Sarikaya I, Albatineh AN, Sarikaya A. Revisiting weight-normalized SUV and lean-body-mass-normalized SUV in PET studies. J Nucl Med Technol. 2020;48(2):163-7. doi:10.2967/jnmt.119.235978.
Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54. doi:10.1007/s00259-014-2961-x.
Nitta N, Yoshimatsu R, Iwasa H, Nakaji K, Yamagami T, et al. Difference in arterial FDG accumulation in healthy participants between digital PET/CT and standard PET/CT. Ann Nucl Med. 2024;38(2):96‑102. doi:10.1007/s12149-023-01875-4
Abd-Elkader MS, Elmaghraby SM, Abdel-Mohsen MA, Youssef M, Khalil H, Barakat M, et al. Estimation of liver standardized uptake value in F18-FDG PET/CT scanning: impact of different malignancies, blood glucose level, body weight normalization, and imaging systems. Ann Nucl Med. 2025;39(2):176‑88. doi:10.1007/s12149-024-01954-9.
Lodge MA. Repeatability of SUV in oncologic 18F-FDG PET. J Nucl Med. 2017;58(4):523-32. doi:10.2967/jnumed.116.186353.
Gafita A, Calais J, Franz C, Rauscher I, Rettig MB, Eiber M, et al. Evaluation of SUV normalized by lean body mass (SUL) in 68Ga-PSMA11 PET/CT: a bi-centric analysis. EJNMMI Res. 2019;9(1):103. doi:10.1186/s13550-019-0562-y.
Hope TA, Calais J, Goenka AH, Hicks RJ, Van den Abbeele AD, Townsend DW, et al. SNMMI procedure standard/EANM practice guideline for fibroblast activation protein (FAP) PET. J Nucl Med. 2025;66(1):26–33. doi:10.2967/jnumed.124.269002.
Zhang X, Li H, Wang Y, Chen J, Liu Z, Ma Y, et al. AI-assisted body composition–adjusted SUV in PET/CT. Eur J Nucl Med Mol Imaging. 2025;[Epub ahead of print]. doi:10.1007/s00259-025-07021-4.
Cherry SR, Diekmann J, Bengel FM. Quantitative performance of total-body PET systems: adding new perspectives to cardiovascular research. JACC Cardiovasc Imaging. 2023;16(10):1335-47. doi:10.1016/j.jcmg.2023.06.022.
Miwa K, Wagatsuma K, Iimori T, Fujita K, Takahashi R, Yamamoto S, et al. Multicenter study of quantitative PET system harmonization using NIST-traceable 68Ge/68Ga cross-calibration kit. Phys Med. 2018;52:98–103. doi:10.1016/j.ejmp.2018.07.004.
Islam R, Desai S, Moran M, Jackson P, Patel A, Lee J, et al. The role of PSMA PET imaging in prostate cancer: current applications and future directions. Curr Urol Rep. 2025;26(3):46. doi:10.1007/s11934-025-01234-5.
de Vries ISA, Lodema S, Braat AJAT, van Dijk JW, Philipsen T, Roodenburg JLN, et al. Improving accuracy of SUV estimates in paediatric oncology: recommending against the use of body weight corrected SUV in [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2025;52(9):2444–2451. doi:10.1007/s00259-024-06621-0.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:10.1136/bmj.n71.
Huang B, Law MWM, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251(1):166-74. doi:10.1148/radiol.2511081300.
Kovacs DG, Ladefoged CN, Berthelsen AK, Andersen FL, Højgaard L, Law I, et al. Combined dual energy and iterative metal artefact reduction for PET/CT in head and neck cancer. Phys Med Biol. 2020;65(24):245010. doi:10.1088/1361-6560/abcde3.
Kang SK, Kim D, Shin SA, Kim HJ, Lee J, Park S, et al. Fast and accurate amyloid brain PET quantification without MRI using deep neural networks. J Nucl Med. 2023;64(5):765–72. doi:10.2967/jnumed.122.264414.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Ahmet Murat Şenışık

This work is licensed under a Creative Commons Attribution 4.0 International License.

