Dosimetric Assessment Of Intraoperative Radiation Therapy Utilizing Xoft Axxent Electronic Brachytherapy for Intracranial Tumors
Dosimetric Assessment Of Intraoperative Radiation Therapy Utilizing Xoft Axxent Electronic Brachytherapy for Intracranial Tumors
DOI:
https://doi.org/10.63187/ampas.42Keywords:
brain tumors, Gradient index, Intraoperative radiation therapy, NTCP, SRS, VMATAbstract
Abstract
Purpose: The present study aimed to evaluate low-energy balloon electronic intraoperative radiation therapy (IORT) in terms of dosimetry, gradient indices (GI) and normal tissue complication probability (NTCP) for the treatment of intracranial tumors.
Materials and Methods: Non-coplanar volumetric modulated arc therapy (ncVMAT) plans were generated for 23 patients with a single brain lesion in order to cover 95% of target volume with a prescription dose 20 Gy in 1 fraction. All CT data and structure sets were imported to BrachyCare treatment planning system to calculate IORT dose based on atlas plans. Based on two approaches, critical structure’s dose, gradient indices and NTCP values for Brain-PTV were analyzed to evaluate IORT in terms of radiation dosimetry.
Results: The mean Dmax of brainstem is (4.43 ± 3.13) Gy in ncVMAT plans, and the dose by IORT delivery is (3.27 ± 2.80) Gy. For eyes, lenses and optic nerves, IORT delivery dose is maximum 65% less than ncVMAT delivery dose and this difference is statistically significant for these structures (p≤0.05). The GI value is 2.65 and 2.24 in ncVMAT and IORT techniques respectively. In both approaches NTCP value meet the criterion which is ≤1.0.
Conclusion: Based on results, low energy Xoft Axxent eBX system is better to reduce OARs dose especially when the target is in close proximity to critical structures. Moreover, this system provides better control in low dose region at outside of the target and it results better GI and less probability to radiation necrosis. Considering the dosimetric assessments, IORT is safe to treat single target high grade primary central nervous system (CNS) tumors and intracranial metastatic disease.
References
REFERENCES
Aiyama, H., Yamamoto, M., Kawabe, T., Watanabe, S., Koiso, T., Sato, Y., . . . Matsumura, A. (2018). Clinical significance of conformity index and gradient index in patients undergoing stereotactic radiosurgery for a single metastatic tumor. Journal of neurosurgery, 129(Suppl1), 103-110.
Cifarelli, C. P., Brehmer, S., Vargo, J. A., Hack, J. D., Kahl, K. H., Sarria-Vargas, G., & Giordano, F. A. (2019). Intraoperative radiotherapy (IORT) for surgically resected brain metastases: outcome analysis of an international cooperative study. Journal of neuro-oncology, 145(2), 391-397.
Cifarelli, C. P., & Jacobson, G. M. (2021). Intraoperative Radiotherapy in Brain Malignancies: Indications and Outcomes in Primary and Metastatic Brain Tumors. Frontiers in Oncology, 11.
Dahshan, B. A., Weir, J. S., Bice, R. P., Renz, P., Cifarelli, D. T., Poplawski, L., . . . Cifarelli, C. P. (2021). Dose homogeneity analysis of adjuvant radiation treatment in surgically resected brain metastases: Comparison of IORT, SRS, and IMRT indices. Brachytherapy, 20(2), 426-432.
Dickler, A. (2009). Xoft Axxent® electronic brachytherapy—a new device for delivering brachytherapy to the breast. Nature Reviews Clinical Oncology, 6(3), 138-142.
Dutz, A., Lühr, A., Agolli, L., Troost, E. G., Krause, M., Baumann, M., . . . Bussière, M. (2019). Development and validation of NTCP models for acute side-effects resulting from proton beam therapy of brain tumours. Radiotherapy and oncology, 130, 164-171.
Kadoya, N., Abe, Y., Kajikawa, T., Ito, K., Yamamoto, T., Umezawa, R., . . . Kato, T. (2019). Automated noncoplanar treatment planning strategy in stereotactic radiosurgery of multiple cranial metastases: HyperArc and CyberKnife dose distributions. Medical Dosimetry, 44(4), 394-400.
Krivoshapkin, A., Gaytan, A., Abdullaev, O., Salim, N., Sergeev, G., Marmazeev, I., . . . Kiselev, R. (2021). Prospective comparative study of intraoperative balloon electronic brachytherapy versus resection with multidisciplinary adjuvant therapy for recurrent glioblastoma. Surgical Neurology International, 12.
MacDonald, S. M., Ahmad, S., Kachris, S., Vogds, B. J., DeRouen, M., Gitttleman, A. E., . . . Vlachaki, M. T. (2007). Intensity modulated radiation therapy versus three‐dimensional conformal radiation therapy for the treatment of high grade glioma: a dosimetric comparison. Journal of applied clinical medical physics, 8(2), 47-60.
Marks, L. B., Yorke, E. D., Jackson, A., Ten Haken, R. K., Constine, L. S., Eisbruch, A., . . . Deasy, J. O. (2010). Use of normal tissue complication probability models in the clinic. International Journal of Radiation Oncology* Biology* Physics, 76(3), S10-S19.
Mourtada, F. (2016). Physics of intraoperative radiotherapy for the breast. In Short course breast radiotherapy (pp. 317-325): Springer.
Narayanasamy, G., Stathakis, S., Gutierrez, A. N., Pappas, E., Crownover, R., Floyd, J. R., & Papanikolaou, N. (2017). A systematic analysis of 2 monoisocentric techniques for the treatment of multiple brain metastases. Technology in cancer research & treatment, 16(5), 639-644.
Palma, G., Monti, S., Conson, M., Pacelli, R., & Cella, L. (2019). Normal tissue complication probability (NTCP) models for modern radiation therapy. Paper presented at the Seminars in oncology.
Patel, G., Mandal, A., Choudhary, S., Mishra, R., & Shende, R. (2020). Plan evaluation indices: a journey of evolution. Reports of Practical Oncology and Radiotherapy, 25(3), 336-344.
Redjal, N., Venteicher, A. S., Dang, D., Sloan, A., Kessler, R. A., Baron, R. R., . . . Olson, J. J. (2021). Guidelines in the management of CNS tumors. Journal of neuro-oncology, 151(3), 345-359.
Reynolds, T. A., Jensen, A. R., Bellairs, E. E., & Ozer, M. (2020). Dose gradient index for stereotactic radiosurgery/radiation therapy. International Journal of Radiation Oncology* Biology* Physics, 106(3), 604-611.
Ruggieri, R., Naccarato, S., Mazzola, R., Ricchetti, F., Corradini, S., Fiorentino, A., & Alongi, F. (2019). Linac-based radiosurgery for multiple brain metastases: Comparison between two mono-isocenter techniques with multiple non-coplanar arcs. Radiotherapy and oncology, 132, 70-78.
Seltzer, S. M., O’Brien, M., & Mitch, M. G. (2014). New national air-kerma standard for low-energy electronic brachytherapy sources. Journal of research of the National Institute of Standards and Technology, 119, 554.
Senthilkumar, K., & Das, K. M. (2019). Comparison of biological-based and dose volume-based intensity-modulated radiotherapy plans generated using the same treatment planning system. Journal of cancer research and therapeutics, 15(8), 33.
Silverstein, M. J., Epstein, M., Kim, B., Lin, K., Khan, S., Snyder, L., . . . Chen, P. (2018). Intraoperative radiation therapy (IORT): a series of 1000 tumors. Annals of surgical oncology, 25(10), 2987-2993.
Silverstein, M. J., Epstein, M. S., Lin, K., Chen, P., Khan, S., Snyder, L., . . . Coleman, C. (2017). Intraoperative radiation using low-kilovoltage x-rays for early breast cancer: A single site trial. Annals of surgical oncology, 24(10), 3082-3087.
Tom, M. C., Hepel, J. T., Patel, R., Kamrava, M., Badiyan, S. N., Gil'ad, N. C., & Shah, C. (2019). The American Brachytherapy Society consensus statement for electronic brachytherapy. Brachytherapy, 18(3), 292-298.
Vargo, J. A., Sparks, K. M., Singh, R., Jacobson, G. M., Hack, J. D., & Cifarelli, C. P. (2018). Feasibility of dose escalation using intraoperative radiotherapy following resection of large brain metastases compared to post-operative stereotactic radiosurgery. Journal of neuro-oncology, 140(2), 413-420.
Wagner, T. H., Bova, F. J., Friedman, W. A., Buatti, J. M., Bouchet, L. G., & Meeks, S. L. (2003). A simple and reliable index for scoring rival stereotactic radiosurgery plans. International Journal of Radiation Oncology* Biology* Physics, 57(4), 1141-1149.
Watson, P. G., Popovic, M., Liang, L., Tomic, N., Devic, S., & Seuntjens, J. (2021). Clinical implication of dosimetry formalisms for electronic low-energy photon intraoperative radiation therapy. Practical radiation oncology, 11(1), e114-e121.
Weil, R. J., Mavinkurve, G. G., Chao, S. T., Vogelbaum, M. A., Suh, J. H., Kolar, M., & Toms, S. A. (2015). Intraoperative radiotherapy to treat newly diagnosed solitary brain metastasis: initial experience and long-term outcomes. Journal of neurosurgery, 122(4), 825-832.
Yusuf, M. B., Amsbaugh, M. J., Burton, E., Nelson, M., Williams, B., Koutourousiou, M., . . . Woo, S. (2018). Increasing time to postoperative stereotactic radiation therapy for patients with resected brain metastases: investigating clinical outcomes and identifying predictors associated with time to initiation. Journal of neuro-oncology, 136(3), 545-553.
Ziu, M., Kim, B., Jiang, W., Ryken, T., & Olson, J. J. (2020). The role of radiation therapy in treatment of adults with newly diagnosed glioblastoma multiforme: a systematic review and evidence-based clinical practice guideline update. Journal of neuro-oncology, 150(2), 215-267.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 sumeyra can, Didem KARACETİN, Pierfrancesco SILLI, Cristian PEREZ, İlknur HARMANKAYA

This work is licensed under a Creative Commons Attribution 4.0 International License.

