An Overview of the Historical Development, Synthesis and Characterization Techniques of Nanoparticles Also Used as Radiosensitizers

Authors

DOI:

https://doi.org/10.63187/ampas.36

Keywords:

Nanotechnology, Nanoparticles, Historical Development, Classification, Synthesis Approaches, Characterization Techniques

Abstract

Today, nanotechnology is widely used in a wide range of areas, from medical applications such as targeted drug delivery, cancer treatment, and tissue engineering to energy solutions such as solar panels, fuel cells, and batteries, and environmental applications such as the detection and treatment of air, water, and soil pollution. The use of nanoparticles as radiosensitizer agents in cancer treatment has increased significantly in recent years due to their properties such as high surface area/volume ratio, biocompatibility and targetability. Nanoparticles can enhance the biological effects of ionizing radiation during radiotherapy, thereby aggravating DNA damage in tumor cells and thus increasing treatment efficacy. Metal nanoparticles, especially those with high atomic numbers (e.g., gold, silver, gadolinium), increase photon absorption, increasing local dose density and providing selective radiosensitization at the tumor site. In addition, thanks to surface modifications, targeted delivery, extension of circulation time and protection of healthy tissues are possible. With these aspects, nanoparticle-based radiosensitizers carry significant potential in oncological treatments by contributing to achieving high therapeutic efficacy with lower radiation doses and reducing treatment-related side effects. This review aims to provide a comprehensive overview of the scientific development of nanoparticles used as radiosensitizers, from a historical perspective, and to explain how these structures are classified, synthesized, and characterized. The evolution of nanoparticles is presented in chronological order, starting from prehistoric traces to modern nanotechnology. In the classification section, the grouping of nanoparticles according to their origin, morphology and chemical composition is discussed, while the synthesis approaches are examined on the basis of top-down, bottom-up and hybrid methods. Finally, modern characterization techniques used to determine the structural and surface properties of nanoparticles are included. The compilation aims to provide an up-to-date and systematic resource for researchers working in the field of nanotechnology within the framework of these four main headings.

References

Dai Z.R., Bradley J.P., Joswiak D.J., Brownlee D.E., Hill H.G.M., Genge M.J. (2002).Possible in situ formation of meteoritic nanodiamonds in the early Solar System. Nature.418:157–159. doi: 10.1038/nature00897.

Barhoum A., García-Betancourt M.L.,Jeevanandam J., Hussien E.A., Mekkawy S.A. , Menna M. ,et al. (2022). Review on Natural, Incidental,Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations’’ Nanomaterials (Basel). Jan 6;12(2):177. doi: 10.3390/nano12020177

Yetisen A.K., Coskun A.F., England G., Cho S., Butt H., Hurwitz J., et al. (2016). Art on the Nanoscale and Beyond. Advanced Materials, 28(9), 1724 1742. doi:10.1002/adma.201502382)

Oakley, K. (1956). Fire as Palaeolithic Tool and Weapon. Proceedings of the Prehistoric Society.July.Proceedings of the Prehistoric Society 21(4):36-48 DOİ:10.1017/S007949X00017382

Freestone, I., Meeks, N., Sax, M., & Higgitt, C. (2007). The Lycurgus Cup — A Roman nanotechnology. Gold Bulletin, 40(4), 270–277. doi:10.1007/bf03215599

Yacamán M.J., Rendón L., J. Arenas, Puche M.C.S (1996). Maya Blue Paint: An AncientnNanostructured Material. Science. Science. Jul. 12;273(5272):223-5. doi: 10.1126/science.273.5272.223.

Tolochko, N.K. (2009). History of Nanotechnology. Nanoscıence And Nanotechnologıes Belarus State Agrarian Technical University, Belarus

Reibold M., P Paufler P., Levin A.A., Kochmann W., Pätzke N., Meyer D.C., (2006). Materials: Carbon nanotubes in an ancient Damascus sabre. Nature. Nov 16;444(7117):286. doi: 10.1038/444286a

Schaming, D. and Remita, H. (2015) Nanotechnology: From the Ancient Time to Nowadays. Foundations of Chemistry, 17, 187-205. doi.org/10.1007/s10698-015-9235-y

Sciau, P., (2012). Nanoparticles in Ancient Materials: The Metallic Lustre Decorations of Medieval Ceramics. May.doi:10.5772/34080

Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. Annalen der Physik, vol. 330, Issue 3, pp.377-445 DOI: 10.1002/andp.19083300302

Santos,L., Fortunato,E., ve Pereira,L. (2015). Engineering of Metal Oxide Nanoparticles— Applications in Electrochemical Devices, Lambert Academic Publishing, Germany. Thesis (Ph.D.)--Universidade NOVA de Lisboa (Portugal), 2015.; Publication Number: AAT 10597252; Source: Dissertation Abstracts International, Volume: 75-06C.; 180 p.

Synge EH (1928). XXXVIII. A suggestedmethod for extending microscopic resolution into theultra-microscopic region. Londra. Edinb. Dublin Filosu. Mag. J. Sci. Volume 6, Pages 356-362 , doi.org/10.1080/14786440808564615

Niska, K., Zielinska, E., Radomski, M. W., Inkielewicz-Stepniak, I. (2018). Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem.Biol. Interact. Nov 1:295:38-51. doi: 10.1016/j.cbi.2017.06.018

Shockley W. (1951). Circuit Element Utilizing Semiconductive Material. 2569347A. U.S. Patent.

Müller E.W., Bahadur K. (1956). Field Ionization of Gases at a Metal Surface and the Resolution of the Field Ion Microscope. Phys. Rev.102, 624, doi.org/10.1103/PhysRev.102.624

Watson J.D., Crick F.H.C. (1953).Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature. 25;171(4356):737-8. doi: 10.1038/171737a0.

Von Hippel A. (1956). Molecular Engineering. Science. Feb 24;123(3191):315-7. doi: 10.1126/science.123.3191.315

Esaki L. (1958). New Phenomenon in Narrow Germanium p-n Junctions. Phys. Rev. 109, 603, doi.org/10.1103/PhysRev.109.603

Feynman, R. (1960) There’s Plenty of Room at the Bottom. Engineering and Science, 23, 22-36.

http://resolver.caltech.edu/CaltechES:23.5.1960Bottom

Keiper, A. (2003). The Nanotechnology Revolution. A journal of Technology and Society. The New Atlantis, No. 2 (Summer) , pp. 17-34 (18 pages) https://www.jstor.org/stable/43152024

Taniguchi N., Arakawa C. ve Kobayashi T. (1974). On the basic concept of nano-technology; Proceedings of the International Conference on Production Engineering; Tokyo, 18-23. Japan.

Drexler E.K. (1981). Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA. Proc Natl Acad Sci U S A, Sep;78(9):5275–5278. doi: 10.1073/pnas.78.9.5275

Radin, J. (2011). Bounding an emerging technology: Para-scientific media and the Drexler-Smalley debate aboutnanotechnology. Social Studies of Science Drexler E.K. Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA. 1981

Binnig,G. (1993). “Scanning tunneling microscopy -From Birth to Adolescence,” in Nobel Lectures, Physics 1981-1990, vol. 152–153, Singapore: World Scientific Publishing Co.

Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318(6042), 162–163. doi:10.1038/318162a0

Smalley, R.E. (2003). “Discovering the fullerenes,” in Nobel Lectures, Chemistry 1996-2000, Singapore: World Scientific Publications Co.

Binnig, C. F. Quate, C. Gerber, (1986). “Atomic Force Microscope,” Phys. Rev. Lett., vol. 56, no. 9, p. 930.

İşcan O. (2009). Katodun Atomik Yapısının Nano Karbon Üretimi Üzerine Etkileri Yüksek Lisans Tezi İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.

Özer Y., (2019). Nanoteknoloji’nin Askerî Uygulamaları Üzerine Bir Değerlendirme, Güvenlik Bilimleri Dergisi Nisan, IDEF Özel Sayı – 33-52 DOI:10.28956/gbd.551739

Mohamed N.A., Isra Marei I.,Crovella S., Abou-Saleh H., (2022). Recent Developments in Nanomaterials-Based Drug Delivery and Upgrading Treatment of Cardiovascular Diseases. Int. J. Mol. Sci Jan 26;23(3):1404.doi: 10.3390/ijms23031404

Bedeloğlu,A., Taş,M.(2016). Grafen ve Grafen Üretim Yöntemler.Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi,16(3),544-554.

Sun L.,Liu H., Ye Y.,Lei Y., Islam R, Tan S.,et al. (2023). Smart nanoparticles for cancer therapy. Sig Transduct Target Ther 8, 418 https://doi.org/10.1038/s41392-023-01642-x

Hui X., Shuang L., You-Shuo L., (2022). Nanoparticles in the diagnosis and treatment of vascular aging and related diseases Signal Transduct Target Ther ;7(1):231. doi: 10.1038/s41392-022-01082-z.

Oran, D., Rodriques, S. G., Gao, R., Asano, S., Skylar-Scott, M. A., Chen, F.,et al. (2018). 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science. Dec 14;362(6420):1281-1285. doi: 10.1126/science.aau5119

Dönmez E., Yüksel Dolgun H.T., Kırkan Ş., (2021). Nanopartiküler Aşılar Journal of Anatolian Environmental and Animal Sciences. Volume: 6 Issue: 4, 578 - 584, https://doi.org/10.35229/jaes.970713

Nirmala M.J.,Kizhuveetil U.,Johnson A., Balaji G., Nagarajana R., Muthuvijayan V., (2023 ). Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSV Adv. Mar 14;13(13):8606–8629. doi: 10.1039/d2ra07863e

Biswas, A. K., Islam, M. R., Choudhury, Z. S., Mostafa, A., Kadir, M. F. (2014). ‘’Nanotechnology based approaches in cancer therapeutics’’ Advances in Natural Sciences: Nanoscience and Nanotechnology. Volume 5, Number 4 doi: 10.1088/2043-6262/5/4/043001

Bawoke, M., Birhanu A, (2024). Nanomaterials: Terms, Definition and Classification. In book: Reference Module in Materials Science and Materials Engineering doı: 10.1016/b978-0-323-95486-0.00039-9

Joudeh, N., Linke, D.,(2022). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists; Journal of Nanobiotechnology. Jun 7;20:262. doi: 10.1186/s12951-022-01477-8

Khadanga, V., Mishra C.P., (2024). Effect of aerosolized TiO2 nanoparticles on enhanced heat transfer performance in a pipe flow: Experimental investigation. Journal of Dispersion Science and Tecnology. November 46(1):1-10 DOI:10.1080/01932691.2023.2278494

Adul-Rasool A.A., Athair D.M., Zaidan H.K.,RheimaA.M., Al-Sharify Z.T., Mohammed S.H.,et al. (2024). 0,1,2,3D nanostructures, types of bulk nanostructured materials, and drug nanocrystals: An overview. Cancer Treatment and Research Communications :40:100834. doi: 10.1016/j.ctarc.2024.100834. Jul 10.

Singh V., Yadav P., Mishra V., (2020). Recent Advances on Classification, Properties, Synthesis, and Characterization of Nanomaterials https://doi.org/10.1002/9781119576785.ch3

Kladko, V., (2022). Nucleation and growth kinetics of nanoparticles: Mechanisms and controlling factors. CrystEngComm, 24(1), 34-45.

Tahir, M. B., Rafique, M., Sagir, M. (Eds.). (2021). Nanotechnology

Ijaz İ., Gilani S.E., Nazir A., Bukhari A.,(2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles.Green Chemistry Letters and Reviews. July 13(3):59-81 DOI:10.1080/17518253.2020.1802517

Todaro B., Santi M., (2022). Characterization and Functionalization Approaches for the Study of Polymeric Nanoparticles: The State of the Art in Italian Research.Micro. 3 (1), 9-21; https://doi.org/10.3390/micro3010002

Harish V., Ansari M., Tewari D., Gaur M., Yadav A.B., García-Betancourt M.L.,et al. (2022), Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods ; Nanomaterials (Basel). Sep.16;12(18):3226. doi:10.3390/nano12183226.

Hanemann, T., ve Szabó, D. V. (2023). Composite Nanoparticles: Synthesis, Properties, and Applications. Advanced Materials Interfaces, 10(4), 2201557

Szczyglewska P., Feliczak-Guzik A., Nowak I.,(2023). Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules. Jun 22;28(13):4932. doi: 10.3390/molecules28134932.

Khan Y.,SadiaH., Shah S.Z.A., Khan M.N., Shah A.A.,Ullah N.,(2022). Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts, 12(11), 1386; https://doi.org/10.3390/catal12111386

Alshammari B.H., Lashin M.A.M., Mahmood M.A.,Al-Mubaddel F.S., Ilyas N., Rahman N.,et al.(2023). Organic and inorganic nanomaterials: fabrication, properties and applications’’The Royal Society of Chemistry. RSC Adv. 2023 May 5;13(20):13735-13785.doi: 10.1039/d3ra01421e

Holmannova D., Borsky P., Tereza Svadlakova T., Borska L., Fiala Z.,(2022).Carbon Nanoparticles and Their Biomedical Applications.Appl. Sci. 12(15), 7865; https://doi.org/10.3390/app12157865

Habiba, K., Makarov V.I., Weiner B.R., Morell G.,(2014). Fabrication of Nanomaterials by Pulsed Laser Synthesis.Manufacturing Nanostructures. September 2014 DOI:10.13140/RG.2.2.16446.28483 In book: Manufacturing Nanostructures (pp.263-291)Chapter: 10

Khan, I., Saeed K., Khan I.,( 2019). Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry. Volume 12, Issue 7, November 2019, Pages 908-931

De Teresa J.M (2020). Introduction to nanolithography techniques and their applications. Nanofabrication Nanolithography techniques and their applications CHAPTER 1Pages 1-1 to 1-28

Russo R.E.(2023). Laser ablation research and development: 60 years strong. Applied Physics A. February Applied Physics A 129(3).DOI:10.1007/s00339-023-06425-3

Babrauskas, V., Legget D. (2019). Thermal decomposition of ammonium nitrate. Fire and Materials. December Fire and Materials 44(2).DOI:10.1002/fam.2797

El-Eskandarany M.S., Al-Hazza A., Al-Hajji L.A., Ali N., Al-Duweesh A.A., Banyan M., et al. (2021). Mechanical Milling: A Superior Nanotechnological Tool for Fabrication of Nanocrystalline and Nanocomposite Materials.Nanomaterials. 11(10), 2484; https://doi.org/10.3390/nano11102484

Malamatari M., Charisi A.,Malamataris S., Kachrimanis K., Nikolakakis I.,(2020). Spray Drying for the Preparation of Nanoparticle-Based Drug Formulations as Dry Powders for Inhalation.Processes, 8(7), 788; https://doi.org/10.3390/pr8070788

Del Secco,B., Trabucco S., Ravegnani F., Koivisto A.J., Zanoni I., Blosi M.,et al.(2022). Particles Emission from an Industrial Spray Coating Process Using Nano-Materials. Nanomaterials (Basel). 12(3), 313; https://doi.org/10.3390/nano12030313

Yang, G., Park S.j. (2019).Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review Materials (Basel).12(7), 1177; https://doi.org/10.3390/ma12071177

Zhang, D. (2024). Significant Progress of Initiated Chemical Vapor Deposition in Manufacturing Soft Non-spherical Nanoparticles: Upgrading to the Condensed Droplet Polymerization Approach and Key Technological Aspects. ChemEngineering.8(1), 2; https://doi.org/10.3390/chemengineering8010002

Iqbal,P., Preece J.A.,Mendes P.M., (2012). Nanotechnology: The “Top-Down” and “Bottom-Up” Approaches Supramolecular Chemistry March .https://doi.org/10.1002/9780470661345.smc195

Ates,H., Bahcecı E.(2015). Nano Malzemeler için Üretim Yöntemleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Teknoloji GU J Sci Part:C 3(2):483-499

Ealias, A.N., Saravanakumar, M.P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Series: Materials Science and Engineering December 263(3):032019.DOI:10.1088/1757-899X/263/3/032019

Bokov, D., Turki Jalil A., Chupradit S., Suksatan W., Ansari, M.J., Shewael I.H.,(2021). Nanomaterial by Sol-Gel Method: Synthesis and Application’’ Advances in Materials Science and Engineering December .DOI:10.1155/2021/5102014

Acharya, S.S., Pal Singh J. (2023). ‘’Introductory Chapter: Sol-Gel Synthesis’’İntechopen doi:10.5772/intechopen.111378

Souto, E.B., Cano A., Martins-Gomes C., Coutinho T.E., Zieli ´nska A., Silva M.E., (2022). Microemulsions and Nanoemulsions in Skin Drug Delivery’’ Bioengineering (Basel). Apr 5;9(4):158. doi: 10.3390/bioengineering9040158.

Gebre S.H., Sendeku M.S.,Bahri M.,(2021). Recent Trends in the Pyrolysis of Non-Degradable Waste Plastics. ChemistryOpen Dec 7;10(12):1202–1226. doi: 10.1002/open.202100184

Mahmoodi, N. M., Motavalizadehkakhky A., Darroudi M., Mehrzad J., Zhiani R.,(2023). Green synthesis of nanoparticles: Recent developments and future prospects. Chemical Engineering Journal, 452, 139405.

Sandhu, S., Goel, S. (2023). Biosynthesis of nanoparticles: A sustainable approach for nanotechnology applications. Journal of Environmental Chemical Engineering, 11(2), 108398

Ulas F., Ebubekir Yüksel E., Dinçer D., Abdelfattah Dababat A., Imren M., (2025).Recent Advances in Plant-Based Green Synthesis of Nanoparticles: A Sustainable Approach for Combating Plant-Parasitic Nematodes Sustainability 2025, 17(9), 4152; https://doi.org/10.3390/su17094152

Mourdikoudis S., Pallares R.M.,Thanh N.T.K.,(2018). Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. The Royal Society of Chemistry DOI: 10.1039/C8NR02278J (Review Article) Nanoscale, 10, 12871-12934

Malatesta M.(2021). Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int J Mol Sci. Int J Mol Sci. Nov 26;22(23):12789. doi: 10.3390/ijms222312789

Yünsel, T.Y., Ersoy A., Ehsani A.,(2019). X-ışını difraksiyonu yöntemi ile kantitatif mineral içeriği tayini ve çalışma şartlarının etkisi’’ :Adana Alparslan Turkes BTU Fen Bilimleri Dergisi, Cilt: 2 Sayı: 2, 16 – 28

Sagadevan, S., Koteeswari P; (2015). Analysis of Structure, Surface Morphology, Optical and Electrical Properties of Copper Nanoparticles; Journal of Nanomedicine Research. Volume 2 Issue 5,;2(5):133‒136. DOI: 10.15406/jnmr.2015.02.00040

Mayeen, A., Shaji L.K.,Nair A.K., Kalarikkal N.,(2018).Morphological Characterization of Nanomaterials Characterization of Nanomaterials Chapter 12 Pages 335-364

Bellotti R., Picotto G.B., Ribotta L., (2022). AFM Measurements and Tip Characterization of Nanoparticles with Diferent Shapes’’Nanomanufacturing and Metrology. February. 5(4).DOI:10.1007/s41871-022-00125-x

Carvalho, P.M., Felício M.R., Santos N.C., Gonçalves S., Domingues M.,(2018). Application of Light Scattering Techniques to Nanoparticle Characterization and Development; Front. Chem Front Chem. 2018 Jun 25;6:237. doi: 10.3389/fchem.2018.00237

Roy, D., Knight, A.E. (2017). Scanning Near-Field Optical Microscopy and Related Techniques’’ Encyclopedia of Spectroscopy and Spectrometry (Third Edition) December DOI:10.1016/B978-0-12-374413-5.00011-7

Duygu D,. Baykal T., Açıkgöz İ., Yıldız K.,(2009). Fourier Transform Infrared (Ft-Ir) Spectroscopy For Biological Studies. G.U. Journal Of Science Volume: 22 Issue: 3, 117 – 121

Bumbrah, G.S.,ve Sharma R.M.,(2016). Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. June. Egyptian Journal of Forensic Sciences 6(3):209-215 DOI:10.1016/j.ejfs.2015.06.001

Smith, R. J., Jones, A. (2020). Nanoparticles in interdisciplinary science: Bridging fundamentals and applications. Nature Nanotechnology, 15(9), 765-778

Kumar, P., (2021). Nanoparticles in Materials Science: Emerging Trends and Future Perspectives. Advanced Materials, 33(11), 2006239.

Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650

Downloads

Published

2026-01-19

How to Cite

KAYNAR, A. H., & ÇÖMELEKOĞLU, Ülkü. (2026). An Overview of the Historical Development, Synthesis and Characterization Techniques of Nanoparticles Also Used as Radiosensitizers. Advances in Medical Pyhsics and Applied Sciences, 2(1), 33–53. https://doi.org/10.63187/ampas.36

Similar Articles

You may also start an advanced similarity search for this article.